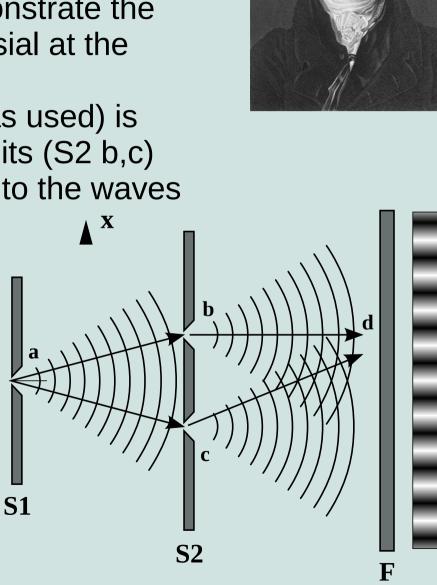

A Brief Introduction To Interferometry


Fundamentals of Radio Interferometry

Oleg Smirnov Rhodes University / SKA SA

NASSP 2016

- Thomas Young (1773-1829)
- Performed experiment in 1803 to demonstrate the wave-like nature of light (still controversial at the time, cf. Newton's corpuscular theory)
- Light source (S1: pinhole -- sunlight was used) is used to illuminates a screen with two slits (S2 b,c)
- Fringe pattern forms on screen F due to the waves from b and c interfering

Brightness, Phase Delay, Interference

 Light is an electromagnetic (EM) wave, described by a complex number* (*amplitude* and *phase*):

$$E = a \mathrm{e}^{\imath \phi}$$

(*: actually, two numbers – see lecture on polarisation later)

- We measure (eye sees, photographic plate records) its brightness or intensity...
 - ...averaged over time

$$B = \langle |E|^2 \rangle = \langle EE^* \rangle = a^2$$

- The same wave travelling along two different paths experiences a phase delay: $E_1 = a_1 e^{i\phi}, \quad E_2 = a_2 e^{i(\phi + \phi_0)}, \quad \phi_0 = 2\pi \tau_0 / \lambda$
- Two arriving waves superimpose:

$$E = E_1 + E_2$$

• The resulting brightness is:

 $(E_1 + E_2)(E_1^* + E_2^*) = |E_1|^2 + |E_2|^2 + E_1E_2^* + (E_1E_2^*)^*$

$$= a_1^2 + a_2^2 + 2a_1a_2\cos\phi_0$$

- The fringe pattern on the screen is caused by the interfering term φ_o , which varies with pathlength difference τ_o , which varies with position on the screen
- Refer to ipython notebook (1.9.2, 1.9.3) for an interactive implementation of this experiment in Python
- Note how sensitive the fringe pattern is to *baseline* (distance between the slits) and *wavelength*

Interferometry: Measuring Stuff?

- Mental experiment: imagine we have built a working double-slit setup. Can we turn the experiment around, and use it as a *measurement* device? Could we measure some properties of the light source?
- Source intensity: not very interesting (don't need an interferometer)
- We can measure source position (refer to ipython notebook, 1.9.4.1)
- Offset in the source position results in a shift of the fringe pattern
- Longer baselines (or shorter wavelengths) = more accurate measurement
- Position measurement is ambiguous due to the periodic nature of the fringe pattern
- Measuring with different baselines resolves ambiguity

• Consider two independent light sources *a* and *b*, can their radiation interfere and form a fringe pattern?

$$E_x = a_x \mathrm{e}^{\imath \phi_x}, \quad E_y = a_y \mathrm{e}^{\imath \phi_y}$$

• Generally, no, because the sum is...

$$(E_x + E_y)(E_x^* + E_y^*) = a_x^2 + a_y^2 + E_x E_y^* + E_x^* E_y$$

• ...and once we take the average in time:

$$\langle E_x E_y^* \rangle = a_x a_y \langle e^{i(\phi_x - \phi_y)} \rangle \to 0$$

- ...the phase difference for two independent sources is essentially random, thus the interfering terms average out to 0
- E_x and E_y are called *mutually incoherent*.

 Contrast that to radiation from one source, two paths, which is coherent*:

$$E_1 = a_1 e^{i\phi}, \quad E_2 = a_2 e^{i(\phi + \phi_0)}$$
$$\langle E_1 E_2^* \rangle = a_1 a_2 \langle e^{-i\phi_0} \rangle$$

 ...the phase difference is constant, and therefore the interfering term does *not* average to 0

> *) To an extent, vis., coherence time: $\langle E(t), E^*(t - t_0) \rangle = ?$

Our signal is essentially noise!

• Radiation from one source received along two paths is coherent:

$$E_1 = a_1 e^{i\phi}, \quad E_2 = a_2 e^{i(\phi + \phi_0)}, \quad \langle E_1 E_2^* \rangle = a_1 a_2 \langle e^{-i\phi_0} \rangle$$

• Radiation from two sources in mutually incoherent:

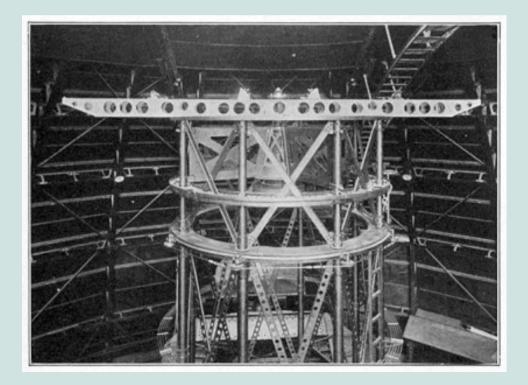
$$\langle E_x E_y^* \rangle = 0$$

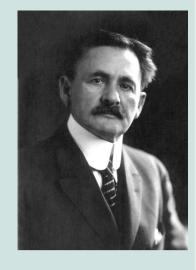
• For two sources illuminating two slits, we then have:

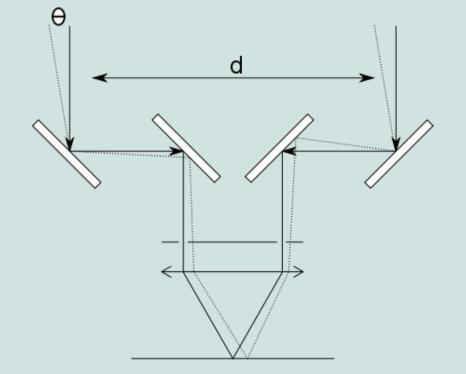
$$\langle (E_{1x} + E_{2x} + E_{1y} + E_{2y})(E_{1x}^* + E_{2x}^* + E_{1y}^* + E_{2y}^*) \rangle$$

$$= \langle |E_{1x}|^2 \rangle + \dots + \langle E_{1x}E_{2x}^* \rangle + \dots + \langle E_{1x}E_{1y}^* \rangle + \dots$$
Constant terms Interfering terms Incoherent terms (=0)

• Therefore, the fringe pattern from two sources is the **sum** of the fringe patterns from each individual source

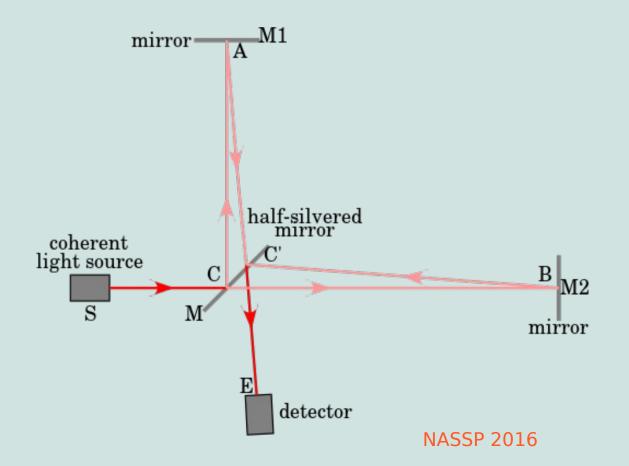

- See notebook, 1.9.4.2
- The fringe patterns from two sources add up and can "wash" each other out, if the spacing is just right
- We can consider an extended source as a combination of many small independent "subsources"
- The fringes from all these "subsources" will tends to "wash out", more so as we increase the source extent
- Therefore, we can measure the source extent by a reduction in the *amplitude* of the fringe pattern
- Historically, this was the first application of interferometry in astronomy


Visibility


- The term *visibility* was originally introduced to describe the contrast (or amplitude) of the fringe pattern, as V=(max-min)/(max+min) (a very literal term: in early experiments fringes were measured "by eye")
- Radio interferometry deals in *complex visibilities:*
 - the amplitude of the fringe corresponds to the visibility amplitude
 - the phase (i.e. offset) of the fringe corresponds to the phase
- <u>All the information in the fringe pattern can be encoded in that</u> one complex number
- Visibility amplitude encodes source shape, visibility phase encodes source position (we will return to this in Chapter 4)
- For technical reasons, phases are much harder to measure accurately, thus all early interferometric experiments dealt in amplitudes

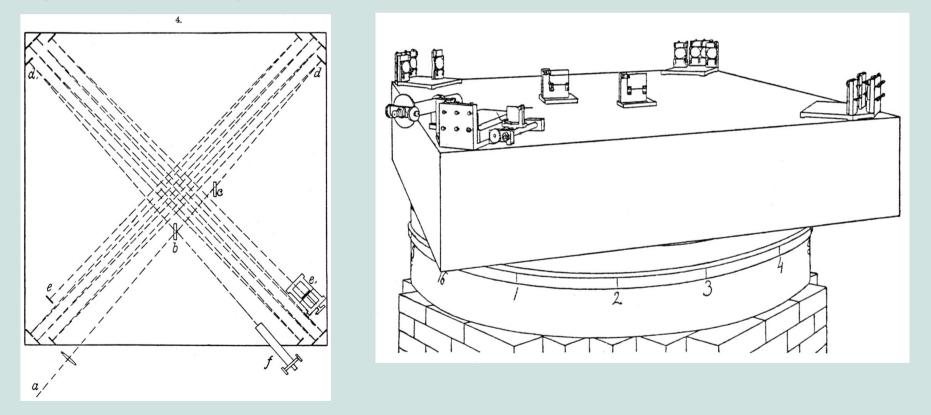
The Michelson Stellar Interferometer

- The first interferometric experiment in astronomy (Michelson & Pease 1921, Astrophys. J. 53, 249–259)
- Constructed at Mount Wilson Observatory
- Fringes observed through an eyepiece!



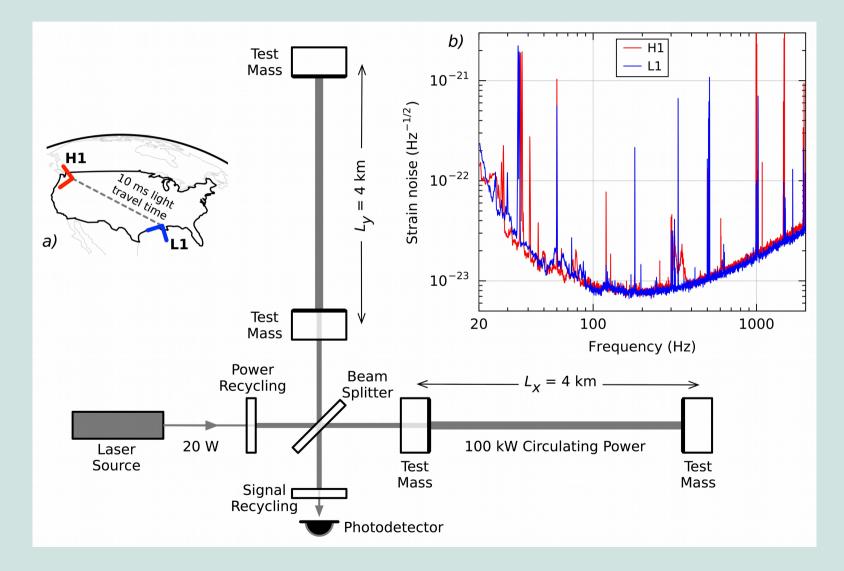
The Betelgeuse Size Measurement

- Michelson & Pease used the Mount Wilson interferometer to measure the size of the red giant Betelgeuse
- Experimental setup: adjustable baseline up to ~6m
- Started at 1m, and observed fringes from Betelgeuse (after a lot of fiddling...)
- Adjusted baseline up in small increments and observed the fringe visibility decrease, until at ~3m they could no longer see fringes
- From this, inferred the size of Betelgeuse to be ~0.05 arcsec
- See notebook appendix for a toy recreation of this


Other Famous Interferometric Experiments

- What else can we measure with an interferometer? Observe that the fringes are extremely sensitive to the geometry of the instrument itself
 - ...and wavelength (Thomas Young)
- We can design careful experiments to measure changes in geometry

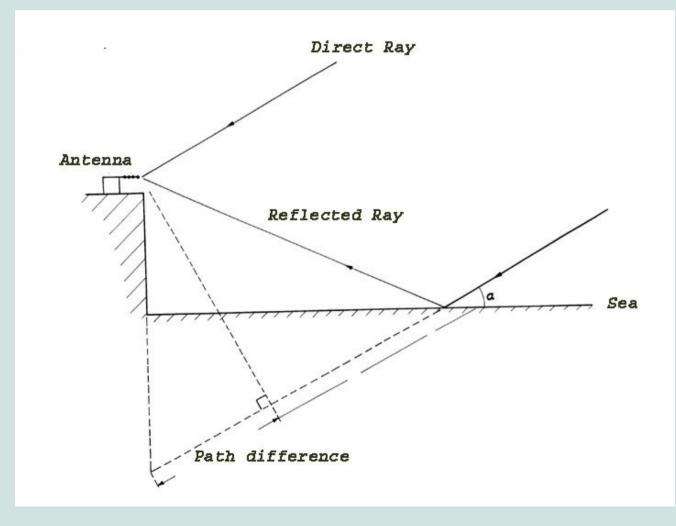
Michelson-Morley (1887)


- Attempted to measure the relative motion of matter through the "luminous aether"
- Negative measurement undermined the aether theory and eventually led to special relativity

• Ring any bells?

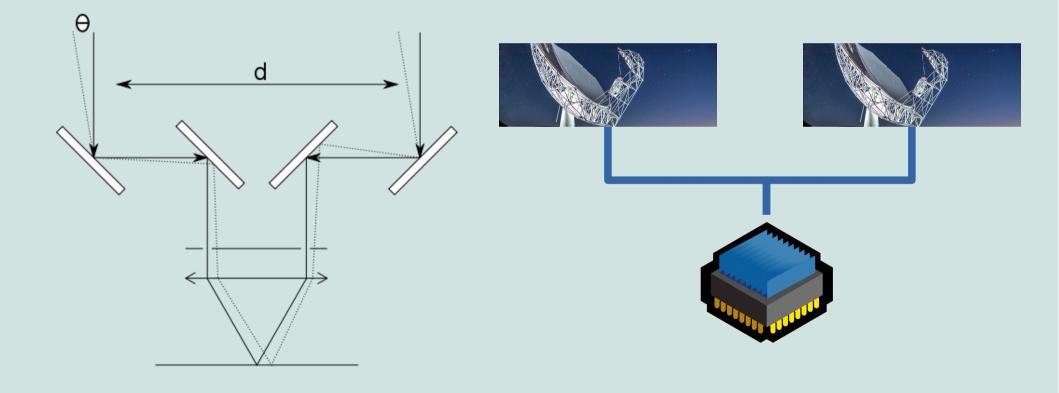
LIGO (2015)

• Interferometric measurement of gravitational waves


Modern Optical Interferometry

- Modern optical interferometers still follow the basic Michelson design
- Example: the Very Large telescope (ESO)

Early Radio Interferometry


- Sea-cliff interferometer (Australia 1945-48)
- Measure the sum of two signals by a single antenna:

NASSP 2016

Modern Radio Interferometry: Going Digital

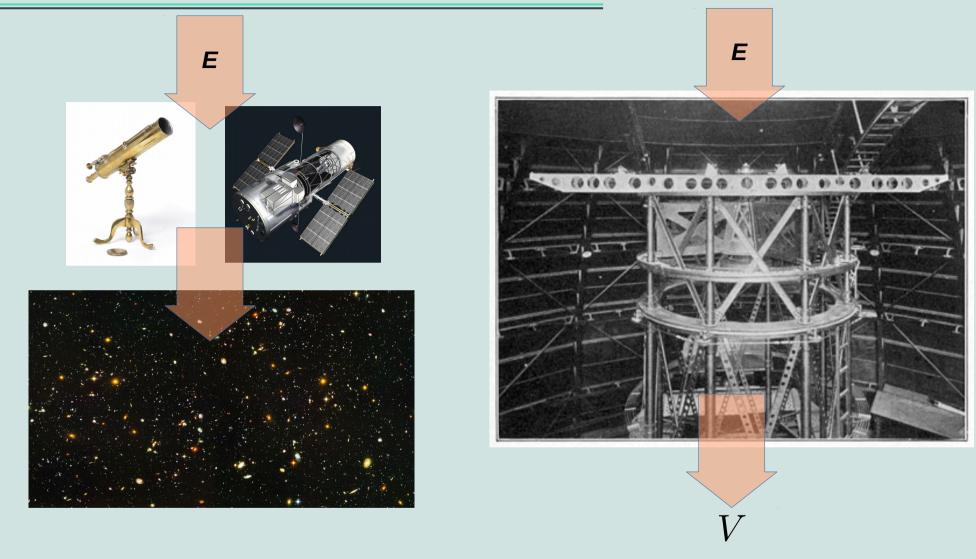
- Radio telescopes can directly sample the incoming EM front
- Replace the optical "light path" by electronics:

Additive vs. Multiplicative Interferometers

• Optical interferometers (and e.g. the sea cliff interferometer) are additive, since they measure

$$\langle |E_1 + E_2|^2 \rangle$$

• Recall that


$$|E_1 + E_2|^2 = |E_1|^2 + |E_2|^2 + E_1 E_2^* + (E_1 E_2^*)^*$$

- ...and that all the interesting "interferometric" information is in the cross-terms
- Modern radio interferometers are *multiplicative*, directly computing

$$\langle E_1 E_2^* \rangle$$

• This is only possible in the radio regime, where we can directly sample and record the signals E_1, E_2

Imaging Vs Single Measurement

- A traditional telescope produces an image (=lots of data)
- Early interferometers would produce a single number

NASSP 2016

Developing Aperture Synthesis

- As we saw earlier (see notebook 1.9.6), a single visibility conveys some information about the source structure
 - ...with ambiguity
- Multiple visibilities (on different baselines) provide additional information
- With sufficient visibility measurements, one can reconstruct an image of the sky
 - ...each visibility measures a *Fourier mode* of the sky brightness distribution
- Sir Martin Ryle: 1974 Nobel Prize for development of this *aperture synthesis* technique
- Modern radio interferometry is aperture synthesis

Aperture Synthesis

 With the development of aperture synthesis, radio interferometers have become true imaging devices, with resolution far in excess of that available to optical telescopes

JVLA image of a galaxy cluster, 2-4 GHz, <1" resolution (data courtesy E. Murphy)

Conclusion

- Modern radio interferometry uses arrays of radio telescopes to image the sky via the *aperture synthesis* technique
- This is what this course is all about

